Economics Lecture 3

2016-17

Sebastiano Vitali

Course Outline

1 Consumer theory and its applications

1.1 Preferences and utility
1.2 Utility maximization and uncompensated demand
1.3 Expenditure minimization and compensated demand
1.4 Price changes and welfare
1.5 Labour supply, taxes and benefits
1.6 Saving and borrowing

2 Firms, costs and profit maximization

2.1 Firms and costs
2.2 Profit maximization and costs for a price taking firm
3. Industrial organization
3.1 Perfect competition and monopoly
3.2 Oligopoly and games
1.2 Utility maximization and uncompensated demand

1.2 Utility maximization and uncompensated demand

1. Budget line and budget set
2. Definition of uncompensated demand
3. Tangency and corner solutions
4. Finding uncompensated demand with Cobb-Douglas utility
5. The effects of changes in prices and income on uncompensated demand
6. Demand curves
7. Elasticity
8. Normal and inferior goods
9. Substitutes and complements
10.Finding uncompensated demand with perfect complements utility
11.Finding uncompensated demand with perfect substitutes utility

Utility maximization and uncompensated demand

1. Budget line and budget set

1. The budget set and budget line

Assume that it is impossible to consume negative quantities.

Notation		
quantities	x_{1}	x_{2}
prices	p_{1}	p_{2}
income	m	

Budget line $p_{1} x_{1}+p_{2} x_{2}=m$
Budget set points with $x_{1} \geq 0, x_{2} \geq 0$ $p_{1} x_{1}+p_{2} x_{2} \leq m$.

What is the gradient of the budget line?

budget line $p_{1} x_{1}+p_{2} x_{2}=m$

Rearranging gives $p_{2} x_{2}=-p_{1} x_{1}+m$
so $\quad x_{2}=-\left(p_{1} / p_{2}\right) x_{1}+\left(m / p_{2}\right)$

What is the gradient of the budget line?

budget line $p_{1} x_{1}+p_{2} x_{2}=m$

Rearranging gives $p_{2} x_{2}=-p_{1} x_{1}+m$
so

gradient

Where does the budget line meet the axes?

Where does the budget line meet the axes?

$$
\text { budget line } p_{1} x_{1}
$$

Where does the budget line meet the axes?

Utility maximization and uncompensated demand

2. Definition of uncompensated demand

2. Definition of uncompensated demand functions

Definition:

The consumer's demand functions
$\mathrm{x}_{1}\left(\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{~m}\right)$ and $\mathrm{x}_{2}\left(\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{~m}\right)$ maximize utility $\mathrm{u}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$
subject to the budget constraint $p_{1} x_{1}+p_{2} x_{2} \leq m$
and non negativity constraints $x_{1} \geq 0 \quad x_{2} \geq 0$.
Later we call this "uncompensated demand".
Some books use the term "Marshallian demand".

To get uncompensated demand fix income and prices which fixes the budget line.

Get onto highest possible indifference curve.

0
X_{1}
x_{2}

0
X_{1} income and prices which fixes the budget line.

Get onto highest possible indifference curve.

To get uncompensated demand fix income and prices which fixes the

 budget line.
Get onto highest possible indifference curve.

x_{2}

0
X_{1} income and prices which fixes the budget line.

Get onto highest possible indifference curve.

To get uncompensated demand fix income and prices which fixes the

 budget line.Get onto highest possible indifference curve.

Compensated demand, Hicksian demand, is a demand function that holds utility fixed and minimizes expenditures. Uncompensated demand, Marshallian demand, is a demand function that maximizes utility given prices and wealth.

Examples of utility maximization

 (uncompensated demand)
Examples of utility maximization (uncompensated demand)

1. Cobb-Douglas utility
2. Perfect complements
3. Perfect substitutes

Examples of utility maximization (uncompensated demand)

For each example we will look at

- Indifference curve diagram
- Effect of prices on demand, own price and cross price elasticities
- Effect of income on demand, normal and inferior goods, income elasticity
- Demand curve diagram

8 steps for finding

 uncompensated demand
8 steps for finding uncompensated demand with differentiable utility

1. Write down the problem you are solving
2. What is the solution a function of?
3. Check for nonsatiation and convexity using calculus if the utility function has partial derivatives

Explain their implications.
4. Use the tangency and budget line conditions.

8 steps for finding uncompensated demand

5. Draw a diagram based on the tangency and budget line conditions.
6. Remind yourself what you are finding and what it depends on.
7. Write down the equations to be solved.
8. Solve the equations and write down the solution as a function. If at this point $x_{1} \geq 0$ and $x_{2} \geq 0$ you have found the utility maximizing point.

Why check for nonsatiation and convexity?
If they are not satisfied there can be
a tangency point A where
MRS = price ratio
that does not solve the problem.
Here nonsatiation fails.
The tangency is at A

Why check for nonsatiation and convexity?

If they are not satisfied there can be
a tangency point A where
MRS = price ratio
that does not solve the problem.
Here nonsatiation fails.
The tangency is at A
but B maximizes utility.

Why check for nonsatiation and convexity?

A point like A that is not a tangency
The point B with $x_{1}>0$ and $x_{2}>0$

0
The point C is a tangency point but does

Here

 convexity failsWhy check for nonsatiation and convexity?

A point like A that is not a tangency cannot maximize utility.
The point B with $\mathrm{x}_{1}>0$ and $\mathrm{x}_{2}>0$

The point C is a tangency point but does

Here

 convexity fails
Why check for nonsatiation and convexity?

A point like A that is not a tangency cannot maximize utility.
The point B with $\mathrm{x}_{1}>0$ and $\mathrm{x}_{2}>0$ maximises utility.

Why check for nonsatiation and convexity?

A point like A that is not a tangency cannot maximize utility.
The point B with $\mathrm{x}_{1}>0$ and $\mathrm{x}_{2}>0$ maximises utility.
It must be a tangency point.

The point C is a tangency point but does not maximize utility.

Here

 convexity failsWhy check for nonsatiation and convexity?
Here convexity fails.
The tangency is A

Logic of first order conditions

Very important.

If the nonsatiation and convexity
 conditions are satisfied then any tangency point at which

MRS = price ratio

$$
x_{1} \geq 0, x_{2} \geq 0
$$

solves the utility maximizing problem.

Finding a tangency solution

The gradient of the indifference curve is - MRS.
The gradient of the budget line is $-p_{1} / p_{2}$.
If $\mathrm{MRS}=p_{1} / p_{2}$ the point is tangent to some budget line

We have already found that

$$
\operatorname{MRS}=\frac{\frac{\partial u}{\partial x_{1}}}{\frac{\partial u}{\partial x_{2}}}
$$

so $\mathrm{MRS}=$ price ratio requires that

$$
\frac{\frac{\partial u}{\partial x_{1}}}{\frac{\partial u}{\partial x_{2}}}=\frac{p_{1}}{p_{2}}
$$

Another way to look at the tangency condition

- Get $\Delta \mathrm{x}_{1}$ more units of x_{1} increase in utility $\quad \Delta x_{1} \frac{\partial u}{\partial x_{1}}$
- Spend $€ 1$ more on x_{1} gives $1 / p_{1}$ more units of good 1
- increase in utility $\frac{1}{p_{1}} \frac{\partial u}{\partial x_{1}}$
- Spend $€ 1$ less on x_{2}
- fall in utility $\frac{1}{p_{2}} \frac{\partial u}{\partial x_{2}}$
- Spending $€ 1$ more on x_{1} and $€ 1$ less on good 2

$$
\text { increases utility if } \frac{1}{p_{1}} \frac{\partial u}{\partial x_{1}}>\frac{1}{p_{2}} \frac{\partial u}{\partial x_{2}}
$$

- Spending $€ 1$ less on good 1 and $€ 1$ more on good 2 increases utility if $\quad \frac{1}{p_{2}} \frac{\partial u}{\partial x_{2}}>\frac{1}{p_{1}} \frac{\partial u}{\partial x_{1}}$
- Utility maximization requires

$$
\frac{1}{p_{1}} \frac{\partial u}{\partial x_{1}}=\frac{1}{p_{2}} \frac{\partial u}{\partial x_{2}}
$$

- Utility maximization requires $\frac{1}{p_{1}} \frac{\partial u}{\partial x_{1}}=\frac{1}{p_{2}} \frac{\partial u}{\partial x_{2}}$

$$
\text { or } \frac{\frac{\partial u}{\partial x_{1}}}{\frac{\partial u}{\partial x_{2}}}=\frac{p_{1}}{p_{2}}
$$

i.e. $M R S=$ price ratio

Finding uncompensated demand with Cobb-Douglas utility

$$
u\left(x_{1}, x_{2}\right)=x_{1}^{2 / 5} x_{2}^{3 / 5}
$$

4. Finding uncompensated demand with Cobb-Douglas utility
Step 1: What problem are you solving?
The problem is maximizing utility $u\left(x_{1}, x_{2}\right)=x_{1}{ }^{2 / 5} x_{2}{ }^{3 / 5}$
subject to non-negativity constraints $\mathrm{x}_{1} \geq 0 \quad \mathrm{x}_{2} \geq 0$
and the budget constraint $p_{1} x_{1}+p_{2} x_{2} \leq m$.
Step 2: What is the solution a function of?

Demand is a function of prices and income so is
$\mathrm{x}_{1}\left(\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{~m}\right) \quad \mathrm{x}_{2}\left(\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{~m}\right)$

Finding uncompensated demand with Cobb-Douglas utility

Step 3: Check for nonsatiation and convexity
We have already done this, both are satisfied.

Easy to lose exam marks

Failing to say that

Because nonsatiation and convexity are satisfied any point on the budget line at which

MRS $=$ price ratio, $x_{1} \geq 0$ and $x_{2} \geq 0$
solves the utility maximizing problem.

Finding uncompensated demand with Cobb-Douglas utility Step 4: Use the tangency and budget line conditions

Because convexity and nonsatiation are satisfied any point with
$p_{1} x_{1}+p_{2} x_{2}=m \quad$ so it is on the budget line
and
MRS $=\quad \mathrm{p}_{1}$ solves the problem
p_{2}
here we have already found

$$
-\frac{\frac{\partial u}{\partial x_{1}}}{\frac{\partial u}{\partial x_{2}}}=-\frac{\frac{2}{5} x_{1}^{-3 / 5} x_{2}^{3 / 5}}{\frac{3}{5} x_{1}^{2 / 5} x_{2}^{-2 / 5}}=-\frac{2 x_{2}}{3 x_{1}}
$$

Finding uncompensated demand with Cobb-Douglas utility

Step 5: Draw a diagram based on the tangency and budget line conditions

Finding uncompensated demand with Cobb-Douglas utility

Step 6: Remind yourself what you are

 finding and what it depends on.You are finding demand x_{1} and x_{2} which is a function of p_{1}, p_{2} and m.

Step 7: Write down the equations to be solved.

The equations are $p_{1} x_{1}+p_{2} x_{2}=m$ and

$$
\frac{2 x_{2}}{3 x_{1}}=\frac{p_{1}}{p_{2}}
$$

Finding uncompensated demand with Cobb-Douglas utility

Step 8 solve the equations and write down the solution as a function.
(You will do some algebra here.)
Solving the equations simultaneously for x_{1} and x_{2} gives (uncompensated) demand which is a function of p_{1}, p_{2}, m.
$\mathrm{x}_{1}\left(\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{~m}\right)=\frac{2}{5} \frac{\mathrm{~m}}{\mathrm{p}_{1}}$

$$
\mathrm{x}_{2}\left(\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{~m}\right)=\frac{3}{5} \frac{\mathrm{~m}}{\mathrm{p}_{2}}
$$

because the conditions $x_{1} \geq 0, x_{2} \geq 0$ are satisfied.

An alternative approach: using Lagrangians

You can also use Lagrangians to find demand.
With two goods, the Lagrangian is not essential. You can base your analysis on graphs and simple algebra.

With more than 2 goods you have to use Lagrangians.

Homogeneity of uncompensated demand

5. The effects of changes in prices and income on uncompensated demand

- If all prices and income are multiplied by a number $\mathrm{k}>0$ what happens?

If all prices and income are all multiplied by 2 what happens?

1. Demand for good 1 increases.
2. Demand for good 1 decreases.
3. Demand for good 1 does not change.
4. Demand for good 2 increases.

5. Demand for good 2 decreases.
6. Demand for good 2 does not change.

Mathematical definition of homogeneous functions

A function $f\left(z_{1}, z_{2}, z_{3} \ldots . z_{n}\right)$ is homogeneous of degree 0 if for all numbers $\mathrm{k}>0$
$f\left(k z_{1}, k z_{2}, k z_{3} \ldots . . k z_{n}\right)=k^{0} f\left(z_{1}, z_{2}, z_{3} \ldots \ldots z_{n}\right)=f\left(z_{1}, z_{2}, z_{3} \ldots \ldots z_{n}\right)$.
Multiplying $z_{1}, z_{2}, \ldots . . z_{n}$ by $k>0$ does not change the value of f.

A function $f\left(z_{1}, z_{2}, z_{3} \ldots . . z_{n}\right)$ is homogeneous of degree one if for all numbers $k>0$
$f\left(k z_{1}, k z_{2}, k z_{3} \ldots . . k z_{n}\right)=k^{1} f\left(z_{1}, z_{2}, z_{3} \ldots . . z_{n}\right)=k f\left(z_{1}, z_{2}, z_{3} \ldots . . z_{n}\right)$
Multiplying $z_{1}, z_{2} \ldots z_{n}$ multiplies the value of f by k.

All prices and income are multiplied by $\mathrm{k}>0$.

How does the budget line change?
How does demand change?

The consumer's demand functions $\mathrm{x}_{1}\left(\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{~m}\right)$ and $\mathrm{x}_{2}\left(\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{~m}\right)$ are in prices and income.

That is if $k>0$
$\mathrm{x}_{1}\left(\mathrm{kp}_{1}, \mathrm{kp}_{2}, \mathrm{~km}\right)=$
$\mathrm{x}_{2}\left(\mathrm{kp}_{1}, \mathrm{kp}_{2}, \mathrm{~km}\right)=$

All prices and income are multiplied by $\mathrm{k}>0$.

How does the budget line change?
no change
How does demand change?

The consumer's demand functions $\mathrm{x}_{1}\left(\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{~m}\right)$ and $\mathrm{x}_{2}\left(\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{~m}\right)$ are in prices and income.

That is if $k>0$
$\mathrm{x}_{1}\left(\mathrm{kp}_{1}, \mathrm{kp}_{2}, \mathrm{~km}\right)=$

$$
\mathrm{x}_{2}\left(\mathrm{kp}_{1}, \mathrm{kp}_{2}, \mathrm{~km}\right)=
$$

All prices and income are multiplied by $\mathrm{k}>0$.

How does the budget line change?
no change
How does demand change?
no change

The consumer's demand functions $\mathrm{x}_{1}\left(\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{~m}\right)$ and $\mathrm{x}_{2}\left(\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{~m}\right)$ are in prices and income.

That is if $k>0$
$\mathrm{x}_{1}\left(\mathrm{kp}_{1}, \mathrm{kp} \mathrm{p}_{2}, \mathrm{~km}\right)=$

$$
\mathrm{x}_{2}\left(\mathrm{kp}_{1}, \mathrm{kp}_{2}, \mathrm{~km}\right)=
$$

All prices and income are multiplied by $\mathrm{k}>0$.

How does the budget line change?
no change
How does demand change?
no change

The consumer's demand functions $\mathrm{x}_{1}\left(\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{~m}\right)$ and $\mathrm{x}_{2}\left(\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{~m}\right)$ are homogeneous of degree 0 in prices and income.

That is if $k>0$
$\mathrm{x}_{1}\left(\mathrm{kp}_{1}, \mathrm{kp}_{2}, \mathrm{~km}\right)=$

$$
\mathrm{x}_{2}\left(\mathrm{kp}_{1}, \mathrm{kp}_{2}, \mathrm{~km}\right)=
$$

All prices and income are multiplied by $\mathrm{k}>0$.

How does the budget line change?
no change
How does demand change?
no change

The consumer's demand functions $\mathrm{x}_{1}\left(\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{~m}\right)$ and $\mathrm{x}_{2}\left(\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{~m}\right)$ are homogeneous of degree 0 in prices and income.

That is if $k>0$
$\mathrm{x}_{1}\left(\mathrm{kp}_{1}, \mathrm{kp}_{2}, \mathrm{~km}\right)=\mathrm{x}_{1}\left(\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{~m}\right)$
$\mathrm{x}_{2}\left(\mathrm{kp}_{1}, \mathrm{kp}_{2}, \mathrm{~km}\right)=$

All prices and income are multiplied by $\mathrm{k}>0$.

How does the budget line change?
no change
How does demand change?
no change

The consumer's demand functions $\mathrm{x}_{1}\left(\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{~m}\right)$ and $\mathrm{x}_{2}\left(\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{~m}\right)$ are homogeneous of degree 0 in prices and income.

That is if $k>0$
$\mathrm{x}_{1}\left(\mathrm{kp}_{1}, \mathrm{kp}_{2}, \mathrm{~km}\right)=\mathrm{x}_{1}\left(\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{~m}\right)$

$$
\mathrm{x}_{2}\left(\mathrm{kp}_{1}, k \mathrm{pp}_{2}, k m\right)=\mathrm{x}_{2}\left(\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{~m}\right)
$$

All uncompensated demand functions are homogeneous of degree 0 in prices and income

This means that if all prices and income are all multiplied by $\mathrm{k}>0$ demand does not change.

With Cobb-Douglas utility $u\left(x_{1}, x_{2}\right)=x_{1}{ }^{2 / 5} x_{2}{ }^{3 / 5}$
$\mathrm{x}_{1}\left(\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{~m}\right)=\frac{2}{5} \frac{\mathrm{~m}}{\mathrm{p}_{1}}$

$$
\mathrm{x}_{2}\left(\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{~m}\right)=\frac{3}{5} \frac{\mathrm{~m}}{\mathrm{p}_{2}}
$$

The values of these functions do not change when p_{1}, p_{2} and m are all multiplied by $\mathrm{k}>0$.

Easy to lose exam marks

Explain what happens to uncompensated demand when prices and income are all multiplied by 2

Saying nothing happens because uncompensated demand is homogeneous of degree 0 in prices

This is a statement of what happens - it is not an explanation.

Changes in demand and demand curves

The budget line moves from L_{1} to L_{2}. Is this due to
$\checkmark 1$. An increase in p_{1}
2. A decrease in p_{1}
3. An increase in p_{2}
4. A decrease in p_{2}
5. An increase in m
6. A decrease in m

p_{1} increases, p_{2} and m do not change. What happens to demand for goods 1 and 2 ?

With Cobb-Douglas utility $u\left(x_{1}, x_{2}\right)=x_{1}{ }^{2 / 5} x_{2}{ }^{3 / 5}$

$$
\mathrm{x}_{1}\left(\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{~m}\right)=\frac{2}{5} \frac{\mathrm{~m}}{\mathrm{p}_{1}}
$$

$$
x_{2}\left(p_{1}, p_{2}, m\right)=\frac{3}{5} \frac{m}{p_{2}}
$$

p_{1} increases, p_{2} and m do not change. What happens to demand for goods 1 and 2 ?

1. Demand for good 1 increases.
2. Demand for good 1 decreases.
3. Demand for good 1 does not change.
4. Demand for good 2 increases.
5. Demand for good 2 decreases.
6. Demand for good 2 does not change.

With Cobb-Douglas utility $u\left(x_{1}, x_{2}\right)=x_{1}{ }^{2 / 5} x_{2}^{3 / 5}$

$$
\mathrm{x}_{1}\left(\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{~m}\right)=\frac{2}{5} \frac{\mathrm{~m}}{\mathrm{p}_{1}}
$$

$$
\mathrm{x}_{2}\left(\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{~m}\right)=\frac{3}{5} \frac{\mathrm{~m}}{\mathrm{p}_{2}}
$$

Demand for good 2 is not affected by the price of good 1.
\longleftarrow price consumption curve

6. Demand curves

Demand

Demand for good 1

If p_{1} increases from $p_{1 A}$ to $p_{1 B}$ there is a movement the demand curve, demand

Demand for good 1

If p_{1} increases from $p_{1 A}$ to $p_{1 B}$ there is a movement on the demand curve, demand falls from $\mathrm{X}_{1 \mathrm{~A}}$ to $\mathrm{X}_{1 \mathrm{~B}}$.

Demand for good 1

If p_{2} changes there is

Demand for good 1

If p_{2} changes there is no change

Demand for good 1

If income m increases

Demand for good 1

If income m increases

Elasticity

7. Elasticity

Measuring the impact of changes in prices \& income

Own price elasticity is
\% change in quantity
\% change in own price
Elasticity captures intuition better than
numerical change in quantity
numerical change in price

A price increase from $€ 1$ to $€ 2$ is large.
A price increase from $€ 10000$ to $€ 10001$ is small.
Elasticity does not depend on units ($\$$ or $£$, kilos or pounds) because \% changes do not depend on units.

Elasticity matters

for every decision on prices, e.g.
for a monopoly or oligopoly deciding on prices
for a government deciding on taxes.

Own price elasticity of demand

either

Elasticity and demand curves

Which demand curve is more elastic A or B ?

Elasticity and demand curves

Which demand curve is more elastic A or B ?

Uncompensated demand for good 1 is

$x_{1}\left(p_{1}, p_{2}, m\right)=\frac{2 m}{5 p_{1}}$

(from Cobb

Douglas utility)
Find
own price elasticity $\frac{\partial x_{1}}{\partial p_{1}} \frac{p_{1}}{x_{1}}$

Uncompensated demand for good 1 is

$x_{1}\left(p_{1}, p_{2}, m\right)=\frac{2 m}{5 p_{1}}$
(from Cobb
Douglas utility)

Find
own price elasticity $\frac{\partial x_{1}}{\partial p_{1}} \frac{p_{1}}{x_{1}}=-\frac{2 m}{5 p_{1}^{2}} \frac{5 p_{1}}{2 m} p_{1}=-1$

Uncompensated demand for good 1 is

$x_{1}\left(p_{1}, p_{2}, m\right)=\frac{2 m}{5 p_{1}}$
(from Cobb
Douglas utility)

Find
cross price elasticity $\frac{\partial x_{1}}{\partial p_{2}} \frac{p_{2}}{x_{1}}$

Uncompensated demand for good 1 is

$x_{1}\left(p_{1}, p_{2}, m\right)=\frac{2 m}{5 p_{1}}$
(from Cobb
Douglas utility)

Find
cross price elasticity $\frac{\partial x_{1}}{\partial p_{2}} \frac{p_{2}}{x_{1}}=0 \frac{5 p_{1}}{2 m} p_{2}=0$

Uncompensated demand for good 1 is

$x_{1}\left(p_{1}, p_{2}, m\right)=\frac{2 m}{5 p_{1}}$
(from Cobb
Douglas utility)

Find
income elasticity $\quad \frac{\partial x_{1}}{\partial m} \frac{m}{x_{1}}$

Uncompensated demand for good 1 is
$x_{1}\left(p_{1}, p_{2}, m\right)=\frac{2 m}{5 p_{1}}$
Find
income elasticity

$$
\frac{\partial x_{1}}{\partial m} \frac{m}{x_{1}}=\frac{2}{5 p_{1}} \frac{5 p_{1}}{2 m} m=1
$$

With Cobb-Douglas utility $u\left(x_{1}, x_{2}\right)=x_{1}{ }^{2 / 5} x_{2}^{3 / 5}$

$$
\mathrm{x}_{1}\left(\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{~m}\right)=\frac{2}{5} \frac{\mathrm{~m}}{\mathrm{p}_{1}}
$$

$$
\mathrm{x}_{2}\left(\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{~m}\right)=\frac{3}{5} \frac{\mathrm{~m}}{\mathrm{p}_{2}}
$$

MRS = price ratio implies

income consumption curve

Normal \& inferior goods

8. Normal and inferior goods

A good is normal if consumption increases.

A good is inferior if consumption increases.
income elasticity $\frac{m}{x_{1}} \frac{\partial x_{1}}{\partial m} \approx \frac{m}{x_{1}} \frac{\Delta x_{1}}{\Delta m}$
positive if x_{1} is a negative if x_{1} is an

Normal and inferior goods

A good is normal if consumption increases when income increases.

A good is inferior if consumption increases.

when income
income elasticity $\frac{m}{x_{1}} \frac{\partial x_{1}}{\partial m} \approx \frac{m}{x_{1}} \frac{\Delta x_{1}}{\Delta m}$
positive if x_{1} is a negative if x_{1} is an

Normal and inferior goods

A good is normal if consumption increases when income increases.

A good is inferior if consumption decreases when income increases.
income elasticity $\frac{m}{x_{1}} \frac{\partial x_{1}}{\partial m} \approx \frac{m}{x_{1}} \frac{\Delta x_{1}}{\Delta m}$
positive if x_{1} is a negative if x_{1} is an

Normal and inferior goods

A good is normal if consumption increases when income increases.

A good is inferior if consumption decreases when income increases.
income elasticity $\frac{m}{x_{1}} \frac{\partial x_{1}}{\partial m} \approx \frac{m}{x_{1}} \frac{\Delta x_{1}}{\Delta m}$
positive if x_{1} is a normal good negative if x_{1} is an

Normal and inferior goods

A good is normal if consumption increases when income increases.

A good is inferior if consumption decreases when income increases.
income elasticity $\frac{m}{x_{1}} \frac{\partial x_{1}}{\partial m} \approx \frac{m}{x_{1}} \frac{\Delta x_{1}}{\Delta m}$
positive if x_{1} is a normal good negative if x_{1} is an inferior good

Substitutes \& complements

9. Substitutes and complements

If demand for good 1 increases when the price of good 2 increases goods 1 and 2 are substitutes.

If demand for good 1 decreases when the price of good 2 increases goods 1 and 2 are complements.

If x_{1} and x_{2} are substitutes

1. Demand for x_{1} increases when p_{2} increases.
2. Demand for x_{1} decreases when p_{2} increases.

If x_{1} and x_{2} are complements

1. Demand for x_{1} increases when p_{2} increases.
2. Demand for x_{1} decreases when p_{2} increases.

Substitutes and Complements

If demand for good 1 increases when the price of good 2 increases goods 1 and 2 are substitutes.

If demand for good 1 decreases when the price of good 2 increases goods 1 and 2 are complements.
cross price elasticitity $\frac{p_{2}}{x_{1}} \frac{\partial x_{1}}{\partial p_{2}} \approx \frac{p_{2}}{x_{1}} \frac{\Delta x_{1}}{\Delta p_{2}}$
positive if x_{1} and x_{2} are negative if x_{1} and x_{2} are

Substitutes and Complements

If demand for good 1 increases when the price of good 2 increases goods 1 and 2 are substitutes.

If demand for good 1 decreases when the price of good 2 increases goods 1 and 2 are complements.
cross price elasticitity $\frac{p_{2}}{x_{1}} \frac{\partial x_{1}}{\partial p_{2}} \approx \frac{p_{2}}{x_{1}} \frac{\Delta x_{1}}{\Delta p_{2}}$
positive if x_{1} and x_{2} are substitutes
negative if x_{1} and x_{2} are

Substitutes and Complements

If demand for good 1 increases when the price of good 2 increases goods 1 and 2 are substitutes.

If demand for good 1 decreases when the price of good 2 increases goods 1 and 2 are complements.
cross price elasticitity $\frac{p_{2}}{x_{1}} \frac{\partial x_{1}}{\partial p_{2}} \approx \frac{p_{2}}{x_{1}} \frac{\Delta x_{1}}{\Delta p_{2}}$
positive if x_{1} and x_{2} are substitutes negative if x_{1} and x_{2} are complements

Shift A to C.
This is an increase in demand.

Shifts in demand curves

Causes? Increase or decrease in price of a complement?
Increase or decrease in price of a substitute?
Increase or decrease in income for a normal good.
Increase or decrease in income for an inferior good.

Shift A to C.
This is an increase in demand.
Causes? Increase or decrease in price of a complement?
Increase or decrease in price of a substitute?
Increase or decrease in income for a normal good.
Increase or decrease in income for an inferior good.

Shift A to C.
This is an increase in demand.
Causes? Increase or decrease in price of a complement?
Increase or decrease in price of a substitute?
Increase or decrease in income for a normal good.
Increase or decrease in income for an inferior good.

Shift A to C.
This is an increase in demand.
Causes? Increase or decrease in price of a complement?
Increase or decrease in price of a substitute?
Increase or decrease in income for a normal good.
Increase or decrease in income for an inferior good.

Shift A to C.
This is an increase in demand.
Causes? Increase or decrease in price of a complement?
Increase or decrease in price of a substitute?
Increase or decrease in income for a normal good.
Increase or decrease in income for an inferior good.

Finding uncompensated demand with

 perfect complements utility
10. Finding uncompensated demand with perfect complements utility

In general $u\left(x_{1}, x_{2}\right)=\min \left(\mathrm{ax}_{1}, \mathrm{bx}_{2}\right)$
here $u\left(x_{1}, x_{2}\right)=\min \left(1 / 2 x_{1}, x_{2}\right)$
x_{1} bike wheels, x_{2} bicycle frames

© Getty Images

Perfect complements utility: indifference curves

$u\left(x_{1}, x_{2}\right)=\min \left(1 / 2 x_{1}, x_{2}\right)$

x_{1} bicycle wheels, x_{2} bicycle frames
if $x_{2}<1 / 2 x_{1}$ increasing x_{1} does not change utility
if $x_{2}>1 / 2 x_{1}$ increasing x_{1} increases utility.

Perfect complements utility: indifference curves

$u\left(x_{1}, x_{2}\right)=\min \left(1 / 2 x_{1}, x_{2}\right)$

x_{1} bicycle wheels, x_{2} bicycle frames
if $x_{2}<1 / 2 x_{1}$ increasing x_{1} does not change utility
if $x_{2}>1 / 2 x_{1}$ increasing x_{1} increases utility.

Perfect complements utility: indifference curves

$$
\begin{aligned}
& \text { frames } \\
& x_{2} \left\lvert\, \begin{array}{l}
u\left(x_{1}, x_{2}\right)=\min \left(1 / 2 x_{1}, x_{2}\right) \\
x_{1} \text { bicycle wheels, } \\
x_{2} \text { bicycle frames } \\
\text { if } x_{2}<1 / 2 \quad x_{1} \text { increasing } x_{1} \\
\text { does not change utility }
\end{array}\right. \\
& 0 \begin{array}{l}
\text { wheels } x_{1} \\
\text { if } x_{2}>1 / 2 x_{1} \text { increasing } x_{1} \\
\text { increases utility. }
\end{array}
\end{aligned}
$$

Perfect complements utility: indifference curves

$u\left(x_{1}, x_{2}\right)=\min \left(1 / 2 x_{1}, x_{2}\right)$

x_{1} bicycle wheels, x_{2} bicycle frames
if $x_{2}=1 / 2 x_{1}$ it is necessary to increase both x_{1} and x_{2} to increase utility

Nonsatiation in the indifference curve diagram with differentiable utility

Nonsatiation means that any point such as D inside or on the boundary of the shaded area is preferred to C.

Here starting from C increasing x_{1} and/or increasing x_{2} increases utility.

Check for this by seeing if the partial derivatives of utility function are >0.

Nonsatiation in the indifference curve diagram with perfect complements utility

Here starting from A increasing
x_{1} and x_{2} increases utility.
Increasing only x_{1} or only x_{2} does not increase utility.
(Think about frames \& wheels.)

The function $u\left(x_{1}, x_{2}\right)=\min \left(1 / 2 x_{1}, x_{2}\right)$
does not have partial derivatives when $1 / 2 x_{1}=x_{2}$ does not have MRS. Can't use calculus.

Perfect complements: utility maximization

budget line
$p_{1} x_{1}+p_{2} x_{2}=m$

0 wheels x_{1}
$u\left(x_{1}, x_{2}\right)=\min \left(1 / 2 x_{1}, x_{2}\right)$
utility maximization
implies that $\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$
lies at the kink of the indifference curves so
$x_{2}=1 / 2 X_{1}$
and satisfies the budget constraint so
$p_{1} x_{1}+p_{2} x_{2}=m$.

Perfect complements: utility maximization

$$
\begin{aligned}
& x_{2}=1 / 2 x_{1} \\
& p_{1} x_{1}+p_{2} x_{2}=m .
\end{aligned}
$$

Solving simultaneously for x_{1} and x_{2} gives

$$
x_{1}=\frac{2 m}{\left(2 p_{1}+p_{2}\right)} \quad x_{2}=\frac{m}{\left(2 p_{1}+p_{2}\right)}
$$

Common mistake

x_{1} wheels, x_{2} frames,
2 wheels for each frame
Easy to think that utility should be $u\left(x_{1}, x_{2}\right)=\min \left(2 x_{1}, x_{2}\right)$
But this implies that $x_{2}=2 x_{1}$,
number of frames $=2$ (number of wheels)
Utility is $u\left(x_{1}, x_{2}\right)=\min \left(1 / 2 x_{1}, x_{2}\right)$

Demand curves and changes in prices and income with perfect complements utility

demand curve diagram, price on vertical axis
quantity on horizontal axis

Increase in p_{1} results in
Increase in p_{2} results in
Increase in m results in

Demand curves and changes in prices and income with perfect complements utility

demand curve diagram, price on vertical axis
quantity on horizontal axis

Increase in p_{1} results in movement along demand curve.
Increase in p_{2} results in
Increase in m results in

Demand curves and changes in prices and income with perfect complements utility

demand curve diagram,
price on vertical axis
quantity on horizontal axis

Increase in p_{1} results in movement along demand curve.
Increase in p_{2} results in shift down in demand curve.
Increase in m results in

Demand curves and changes in prices and income with perfect complements utility

demand curve diagram, price on vertical axis
quantity on horizontal axis

Increase in p_{1} results in movement along demand curve.
Increase in p_{2} results in shift down in demand curve.
Increase in m results in shift up in demand curve.

Finding uncompensated demand with

perfect substitutes utility: corner solutions again

Perfect substitutes utility

In general $u\left(x_{1}, x_{2}\right)=a x_{1}+b x_{2}$
$u\left(x_{1}, x_{2}\right)=3 x_{1}+2 x_{2}$.

indifference curves
$u=3 x_{1}+2 x_{2}$
gradient $-3 / 2$

11. Finding uncompensated demand with

 perfect substitutes utilityStep 1: What problem are you solving?
The problem is maximizing utility $u\left(x_{1}, x_{2}\right)=3 x_{1}+2 x_{2}$
subject to non-negativity constraints $\mathrm{x}_{1} \geq 0 \quad \mathrm{x}_{2} \geq 0$
and the budget constraint $p_{1} x_{1}+p_{2} x_{2} \leq m$.
Step 2: What is the solution a function of?

Demand is a function of prices and income so is
$\mathrm{x}_{1}\left(\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{~m}\right) \quad \mathrm{x}_{2}\left(\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{~m}\right)$

Finding uncompensated demand with perfect substitutes utility

Step 3: Check for nonsatiation and convexity

$\frac{\partial u}{\partial x_{1}}=3>0, \frac{\partial u}{\partial x_{2}}=2>0$ so nonsatiation is satisfied.
Getting x_{2} as a function of u and x_{1} gives $x_{2}=\left(\begin{array}{ll}u & -3 x_{1}\end{array}\right) / 2$ so $\frac{\partial x_{2}}{\partial x_{1}}=-3 / 2 \quad \frac{\partial^{2} x_{2}}{\partial x^{2}{ }_{1}}=0$
convexity is satisfied.

Finding uncompensated demand with perfect substitutes utility Step 4: Use the tangency and budget line conditions

Because convexity and nonsatiation are satisfied any point with
$p_{1} x_{1}+p_{2} x_{2}=m \quad$ so is on the budget line

$p_{1} / p_{2}<3 / 2$
solution at

$p_{1} / p_{2}=3 / 2$
solution at

$p_{1} / p_{2}>3 / 2$
solution at

$p_{1} / p_{2}<3 / 2$
solution at C
$x_{1}=m / p_{1}, x_{2}=0$

$p_{1} / p_{2}<3 / 2$
solution at C

$$
x_{1}=m / p_{1}, x_{2}=0
$$

$p_{1} / p_{2}=3 / 2$
solution at

$p_{1} / p_{2}<3 / 2$
solution at C

$$
x_{1}=m / p_{1}, x_{2}=0
$$

$p_{1} / p_{2}=3 / 2$
solution at any $\mathrm{X}_{1} \mathrm{X}_{2}$
satisfying $x_{1} \geq 0$
$x_{2} \geq 0$ and budget
constraint

$\mathrm{p}_{1} / \mathrm{p}_{2}<3 / 2$
solution at C

$$
x_{1}=m / p_{1}, x_{2}=0
$$

$p_{1} / p_{2}=3 / 2$
solution at any $\mathrm{X}_{1} \mathrm{X}_{2}$
solution at
satisfying $x_{1} \geq 0$
$x_{2} \geq 0$ and budget
constraint

$p_{1} / p_{2}>3 / 2$

$\mathrm{p}_{1} / \mathrm{p}_{2}<3 / 2$
solution at C

$$
x_{1}=m / p_{1}, x_{2}=0
$$

$p_{1} / p_{2}=3 / 2$
solution at any $\mathrm{x}_{1} \mathrm{x}_{2}$ solution at
satisfying $x_{1} \geq 0$
$x_{2} \geq 0$ and budget
constraint

$p_{1} / p_{2}>3 / 2$

A $x_{1}=0$
$x_{2}=m / p_{2}$.

What have we achieved?

- Model of consumer demand: given preferences satisfying listed assumptions.
- Show that preferences can be represented by utility functions: mathematically convenient.
- Model shows how demand responds to changes in own price, price of other good, income.
- Model has only two goods, but with more maths can easily be extended to many goods.

